An improved synthesis of oligodeoxynucleotide N3'-->P5' phosphoramidates and their chimera using hindered phosphoramidite monomers and a novel handle for reverse phase purification.

نویسندگان

  • K L Fearon
  • B L Hirschbein
  • J S Nelson
  • M F Foy
  • M Q Nguyen
  • A Okruszek
  • S N McCurdy
  • J E Frediani
  • L A DeDionisio
  • A M Raible
  • E N Cagle
  • V Boyd
چکیده

Oligodeoxynucleotide N3'-->P5' phosphoramidates are promising candidates for antisense therapeutics, as well as for diagnostic applications. We recently reported a new method for the synthesis of these oligonucleotide analogs which makes use of a phosphoramidite amine-exchange reaction in the key coupling step. We report herein an improved set of monomers that utilize a more reactive, hindered phosphoramidite to produce optimal yields in a single coupling step followed by oxidation, thereby eliminating the need for the previously reported couple-oxidize-couple-oxidize approach. On the 10 micromol scale, the synthesis is performed using only 3.6 equivalents (equiv.) of monomer. An improved oxidation reagent consisting of hydrogen peroxide, water, pyridine and THF is also introduced. Reported here for the first time is the use of a reverse-phase purification methodology employing a ribonucleotide purification handle that is removed under non-acidic conditions, in contrast to the conventional dimethoxytrityl group. The synthesis and purification of uniformly modified N3'-->P5' phosphoramidate oligodeoxy-nucleotides, as well as their chimera containing phosphodiester and/or phosphorothioate linkages at predefined positions, using these new methodologies are included herein. The results of31P NMR studies that led to this improved amine-exchange methodology are also described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of oligodeoxynucleotides using fully protected deoxynucleoside 3'-phosphoramidite building blocks and base recognition of oligodeoxynucleotides incorporating N3-cyano-ethylthymine.

Oligodeoxynucleotide (ODN) synthesis, which avoids the formation of side products, is of great importance to biochemistry-based technology development. One side reaction of ODN synthesis is the cyanoethylation of the nucleobases. We suppressed this reaction by synthesizing ODNs using fully protected deoxynucleoside 3'-phosphoramidite building blocks, where the remaining reactive nucleobase resi...

متن کامل

Solid-phase oligodeoxynucleotide synthesis: a two-step cycle using peroxy anion deprotection.

A novel solid-phase phosphoramidite based oligodeoxynucleotide two-step synthesis method has been developed. Keys to this method are replacement of the 5'-dimethoxytrityl blocking group with an aryloxycarbonyl and the use of N-dimethoxytrityl protection for the exocyclic amines of adenine and cytosine. With these modifications, coupling of each 2'-deoxynucleoside 3'-phosphoramidite to the growi...

متن کامل

Large scale chemical synthesis, purification and crystallization of RNA-DNA chimeras.

RNA-DNA chimeras, in which both DNA and RNA monomers are site-specifically substituted in the same strand, may be prepared only by chemical synthesis. Biochemical studies have revealed a number of surprising and subtle effects resulting from the insertion of either a ribonucleotide into a DNA strand or a deoxyribonucleotide into an RNA strand. The availability of large quantities of these chime...

متن کامل

Synthetic oligodeoxynucleotide purification by polymerization of failure sequences.

Synthetic oligodeoxynucleotide is purified by capping failure sequences with an acrylated phosphoramidite followed by polymerization and product extraction. The method is suitable for large scale oligonucleotide drug purification.

متن کامل

Allosteric inhibitors of telomerase: oligonucleotide N3'-->P5' phosphoramidates.

Telomerase is a ribonucleoprotein responsible for maintaining telomeres in nearly all eukaryotic cells. The enzyme is able to utilize a short segment of its RNA subunit as the template for the reverse transcription of d(TTAGGG) repeats onto the ends of human chromosomes. Transfection with telomerase was shown to confer immortality on several types of human cells. Moreover, telomerase activation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 1998